Output Prediction Logic: A High-Performance CMOS Design Technique

نویسندگان

  • Larry McMurchie
  • Su Kio
  • Gin Yee
  • Tyler Thorp
  • Carl Sechen
چکیده

We present Output Prediction Logic (OPL), a technique that can be applied to conventional CMOS logic families to obtain considerable speedups. When applied to static CMOS, OPL retains the restoring character of the logic family, including its high noise margins. Speedups of 2X to 3 X over (optimized) conventional static CMOS are demonstrated for a variet), of circuits, ranging from chains of gates, to datapath circuits, and to random logic benchmarks. Such speedups are obtained using identical netlists without remapping. When applied to pseudonMOS and dynamic families, in combination with remapping to wide-input NORs, OPL yields speedups of 4 X to 5 X over static CMOS. Since OPL applied to static CMOS is faster than conventional domino logic, and since it has higher noise margins than domino logic, we believe it will scale much better than domino with future processing technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Performance 64-bit Adder Implemented in Output Prediction Logic

Output Prediction Logic (OPL) is a technique that can be applied to conventional CMOS logic families to obtain considerable speedups. When applied to static CMOS, OPL retains the restoring character of the logic family. Speedups of 2x10 3X over (optimized) conventional static CMOS are demonstrated for a variety of circuits, ranging from chains of gates, to datapath circuits, and to random logic...

متن کامل

Design and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology

The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...

متن کامل

Design of Mt-cmos Domino Logic for Ultra Low Power High Performance Ripple Carry Adder

As the requirement of low power high performance arithmetic circuits, in this paper we introduced a design of new MT-CMOS domino logic and FTL dynamic logic technique to design adder circuit. The MT-MOS transistors reduce the power dissipation by minimizing sub threshold leakage current in domino logic circuits introduced. The MT-NMOS transistor connected in discharging path of output inverter ...

متن کامل

A New Ultra Low-Power and Noise Tolerant Circuit Technique for CMOS Domino Logic

Dynamic logic style is used in high performance circuit design because of its fast speed and less transistors requirement as compared to CMOS logic style. But it is not widely accepted for all types of circuit implementations due to its less noise tolerance and charge sharing problems. A small noise at the input of the dynamic logic can change the desired output. Domino logic uses one static CM...

متن کامل

Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts

In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000